skip to primary navigationskip to content


Microtubule formation in Drosophila
Our work addresses how microtubule formation is regulated in space and time. Microtubules are dynamic polymers that make up part of the cell's cytoskeleton. They form a spectacular variety of different arrays within cells and the type of array that forms depends on the type of cell and on what that cell needs to do at a particular time. For example, when a cell needs to divide the microtubules are arranged into a mitotic spindle, which functions to separate the duplicated chromosomes. Whereas in non-dividing neurons, microtubules run through axons and dendrites and are required to transport important molecules between the cell body and the neurite terminals.
growing microtubule
diagram of a growing microtubule
Cells control the type of microtubule array that forms largely by regulating when and where new microtubules form, and they do this using highly conserved multi-protein complexes called gamma-tubulin ring complexes (gamma-TuRCs). Gamma-TuRCs are recruited and anchored to discrete sites within the cell called microtubule organising centres (MTOCs) and here they catalyse the formation of new microtubules. We aim to understand how gamma-TuRCs assemble and how they are recruited to different MTOCs in different cells at different times. To do this we combine powerful genetic manipulation with live cell imaging of fluorescently-tagged proteins in the fruit fly Drosophila melanogaster. Our work has important implications for cancer, as gamma-TuRCs have recently been identified as potential anti-cancer targets.
diagram of a gamma-TuRC



Dr Paul T Conduit


Department of Zoology

University of Cambridge

Downing Street





Office: 0044 1223 334471

Lab: 0044 1223 334475