skip to primary navigationskip to content

Ongoing projects


Organised growth of axons and dendrites

dendritic targeting

We study the mechanisms that regulate the growth, branching and targeting of postsynaptic dendritic arbors (Ou 2008). We have shown that the terminal phases of growth in both axons and dendrites depend on the responses of individual neurons to positioning cues in the mediolateral (Zlatic 2003; Mauss 2009) and dorsoventral axes of the developing nervous system (Zlatic 2009). We have identified these cues and shown that axons and dendrites respond to them by growing to specific locations within the network in an autonomous, target independent fashion. The implication of these findings is that the terminals of connecting pre and postsynaptic partners are delivered autonomously to common localised volumes of the neuropile within which connections will subsequently form.

The regulation of scaling growth

Structural homeostasis

As the Drosophila larva grows, motorneurons, which constitute the output of the locomotor network, need to adjust in order to maintain their ability to efficiently induce contractions of the growing postsynaptic body wall muscles. One possible mechanism is scaling of synapses, which is well studied in the context of the neuromuscular junction. Within the central nervous system, we find that the size of motoneuron dendrites increases during larval development, accommodating a greater number of synapses (Zwart 2013). Moreover, this dendritic growth is proportional to increases in animal body size and it requires the integration of multiple environmental and internal cues. We are currently investigating the role of systemic signals by combining imaging, electrophysiology, and transcriptional profiling techniques.

Activity dependent maturation of network properties


By imaging function in the motor system we have precisely identified the point at which the motor network first becomes active. During this early phase network activity is episodic, recurring at regular intervals separated by extended periods of quiescence. Early episodes are unpatterned, but as the episodes continue, elements of coordinated output begin to appear, culminating finally in episodes of well-patterned crawling-like activity (Crisp 2008). We find that early activity is instructive and required for the normal maturation of motor circuitry (Crisp 2011), suggesting that the requirement for tuning and adjustment in developing circuitry is far more widespread than previously supposed.

Oxidative stress

Oxidative stress

Reactive Oxygen Species (ROS) are a natural byproduct of mitochondrial respiration and lysosomal function. ROS are able to damage cellular macro-molecules including protein, lipid and DNA and are therefore tightly regulated, both within the mitochondria and cytoplasm by the action of superoxide dismutase (SOD) and catalase. Oxidative Stress can occur if the balance between ROS production and clearance is disrupted, an effect observed in multiple neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Building upon work conducted in and in close collaboration with the Sweeney lab (University of York), we are investigating how either genetically (e.g., spinster mutant) or chemically (e.g., paraquat treatment) induced oxidative stress produces an overgrowth of the Drosophila neuromuscular junction (see bouton analysis data above). We are using the Drosophila larval motor system to dissect the mechanisms by which cytoplasmic and mitochondrially derived ROS impinge on neuronal growth. Specifically, working with identified motorneurons we analyse the effects of ROS on both their presynaptic axonal and postsynaptic dendritic terminal arbors. Scale 20µm.


Our research is supported by a variety of funding agencies, including The Royal Society, The Wellcome Trust, the BBSRC, The Gates Cambridge Trust, The Katsia Foundation, Fondation Fyssen, and a Henslow Research Fellowship.

If you are interested in joining our group, please e-mail Michael Bate or Matthias Landgraf to discuss research projects and positions/lab space. We have been successful in obtaining support for promising scientists and are happy to help.


Richard Baines (Faculty of Life Sciences, University of Manchester)

Raymond Budjoso (Department of Veterinary Medicine, University of Cambridge)

Albert Cardona (HHMI Janelia Farm Research Campus)

Jan Felix Evers (Centre for Organismal Studies Heidelberg, Ruprecht-Karls- Universität, 69120 Heidelberg, Germany)

Lee Fradkin (Department of Molecular Cell Biology, Leiden University Medical Center)

Don van Meyel (Centre for Research in Neuroscience, McGill University)

Steve Stowers (Montana State University)

Sean Sweeney (Department of Zoology, University of York)

Gerd Technau (Institut für Genetik, Johannes Gutenberg Universität Mainz)

Davie van Vactor (Department of Cell Biology, Harvard Medical School)

Benjamin White (National Institute of Mental Health, NIH)

Marta Zlatic (HHMI Janelia Farm Research Campus)