Of water flumes, waxy walls and toilet bowls: Evolution of trapping strategies in *Nepenthes* pitcher plants

Ulrike Bauer¹, Christofer Clemente¹, Charles Clarke², Jonathan Moran³ and Walter Federle¹

¹Department of Zoology, University of Cambridge, Cambridge, UK; ²School of Marine, Beihang University, Beijing; ³School of Environment and Sustainability, Royal Brunei University, Brunei.

Nepenthes pitcher plants:
The genus *Nepenthes* comprises >1000 species of carnivorous plants that are the product of a recent and still ongoing diversification in tropical Southeast Asia. They use specialized mucus-shaped leaves (pitchers) to capture prey, mainly arthropods. This enables them to survive in extremely nutrient-poor habitats.

Functional trap components:

- slippery peristome
- wax crystals
- downward-pointing cells
- viscoelastic fluid

Manipulations:
- anti-slip surface coating
- fluid replaced with water

Do species/varieties specialise in different trapping strategies?

A

Manipulation of individual trap components in 2 varieties of *N. rafflesiana*: implications for prey capture

- Presence of trapping structures:
 - slippery peristome
 - wax crystals
 - downward-pointing cells
 - viscoelastic fluid

Manipulations:
- anti-slip surface coating
- fluid replaced with water

Do they rely on different trapping structures in the field? **Yes**

B

Comparative analysis of functional pitcher morphology in 51 *Nepenthes* species

- Do species without wax have **larger** peristomes? **Yes**
- Do species without wax have peristomes with **longer inward slope**? **Yes**

Divergent evolution might be driven by competition for prey.

Evidence from the literature:

These sympatric species differ in trap morphology and target different prey spectra.

Evidence from the field:

A montane species with an extreme strategy for nutrient acquisition.

The problem:
Arthropod diversity and abundance decreases with increasing altitude — more competition for prey

The solution:
Utilisation of alternative nutrient sources: mammalian faeces

- Upper pitchers of *N. lutea* attract tree shrews (*Tupaia montana*) that feed on a white exudate under the pitcher lid
- Upper pitchers have lost the ability to trap insects
- Mature *N. lutea* plants derive 50-100% of their foliar N from tree shrew faeces

Research supported by:

1. Trinity College, Cambridge

Thanks to:

Kew Royal Botanic Gardens
Botanische Gärten Bonn
Universität Bremen, Germany

Preparation: Claire P. le Maire, Tilburg