skip to content

Department of Zoology

 
Subscribe to Research News feed
News from the Department of Zoology.
Updated: 1 hour 11 min ago

Integrated conservation strategies could simultaneously meet biodiversity, climate, and water objectives

Mon, 23/08/2021 - 16:02

To halt the decline of nature and meet Paris Agreement objectives, strategies must be designed and implemented to better manage land use for agriculture, infrastructure, biodiversity conservation, climate change mitigation and adaptation, water provision, and other needs.

A new paper by the Nature Map consortium, published today in the journal Nature Ecology and Evolution, presents an approach for spatial planning to support such integrated conservation strategies.

The study demonstrates that by jointly considering biodiversity, carbon, and water, synergies can be gained from conservation efforts compared to placing emphasis on any individual asset alone. Through strategic action in selected locations, significant benefits can be achieved across all three dimensions. However, conservation efforts need to be greatly scaled-up to meet global biodiversity and climate objectives. 

The paper sets out to determine areas of global importance to manage for conservation that would simultaneously protect the greatest number of species from extinction, conserve vulnerable terrestrial carbon stocks, and safeguard freshwater resources. 

This work is the first of its kind to truly integrate biodiversity, carbon, and water conservation within a common approach and a single global priority map. 

“To implement post-2020 biodiversity strategies such as the Global Biodiversity Framework, policymakers and governments need clarity on where resources and conservation management could bring the greatest potential benefits to biodiversity,” said lead author Martin Jung, a researcher in the IIASA Biodiversity, Ecology, and Conservation Research Group.

He added: “Biodiversity should not be looked at in isolation. Other aspects such as conserving carbon stocks within natural ecosystems should also be considered, so that synergies and trade-offs can be evaluated when pursuing multiple objectives.” 

“This type of approach can support decision makers in prioritising locations for conservation efforts, and shows just how much both people and nature could gain,” said Lera Miles, Principal Technical Specialist – Planning for Places, UN Environment Programme World Conservation Monitoring Centre.

She added “To be successful long-term, these areas must be managed effectively and equitably. That includes respecting the rights of, and empowering indigenous peoples and local communities.” 

“Maps for integrated land use planning can accelerate progress towards climate and biodiversity objectives and have many important additional policy uses, including helping to generate finance for natural climate solutions, improving carbon markets, and greening supply chains,” said Guido Schmidt-Traub, an author of the paper who has also written a related commentary in the same issue of Nature Ecology and Evolution.

The global priority maps can be explored interactively on the UN Biodiversity lab to support decision makers and generate insight and impact for conservation and sustainable development.

Reference
Jung, M., et al.: Areas of global importance for conserving terrestrial biodiversity, carbon, and water. Nature Ecology and Evolution. August 2021. DOI: 10.1038/s41559-021-01528-7

Adapted from a press release by The International Institute for Applied Systems Analysis (IIASA).
 

Managing a strategically chosen 30% of land for conservation could safeguard 70% of all terrestrial plant and vertebrate animal species, while simultaneously conserving around two-thirds of the world’s vulnerable carbon and clean water, according to a new study carried out by the Nature Map Consortium, involving the University of Cambridge. 

This type of approach can support decision makers in prioritising locations for conservation effortsLera MilesAdam Islaam | International Institute for Applied Systems Analysis (IIASA)Global areas of importance for terrestrial biodiversity, carbon and water (dark blue = highest priority, dark orange = lowest priority)


The text in this work is licensed under a Creative Commons Attribution 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicense type: Attribution

Pollinators: first global risk index for species declines and effects on humanity

Mon, 16/08/2021 - 16:01

The Global South may have most to lose from pollinator loss, with Latin America at particular risk due to crop exports and indigenous cultures.

Monitoring the Meerkats of the Kalahari

Fri, 16/07/2021 - 08:55

Getting close was a challenge. Cracking it was key to an incredible 30-year study of the wild meerkats of the Kalahari. 

Climate changed the size of our bodies and, to some extent, our brains

Thu, 08/07/2021 - 10:21

An interdisciplinary team of researchers, led by the Universities of Cambridge and Tübingen, has gathered measurements of body and brain size for over 300 fossils from the genus Homo found across the globe. By combining this data with a reconstruction of the world’s regional climates over the last million years, they have pinpointed the specific climate experienced by each fossil when it was a living human.

The study reveals that the average body size of humans has fluctuated significantly over the last million years, with larger bodies evolving in colder regions. Larger size is thought to act as a buffer against colder temperatures: less heat is lost from a body when its mass is large relative to its surface area. The results are published today in the journal Nature Communications.

Our species, Homo sapiens, emerged around 300,000 years ago in Africa. The genus Homo has existed for much longer, and includes the Neanderthals and other extinct, related species such as Homo habilis and Homo erectus.

A defining trait of the evolution of our genus is a trend of increasing body and brain size; compared to earlier species such as Homo habilis, we are 50% heavier and our brains are three times larger. But the drivers behind such changes remain highly debated.

“Our study indicates that climate - particularly temperature - has been the main driver of changes in body size for the past million years,” said Professor Andrea Manica, a researcher in the University of Cambridge’s Department of Zoology who led the study.

He added: “We can see from people living today that those in warmer climates tend to be smaller, and those living in colder climates tend to be bigger. We now know that the same climatic influences have been at work for the last million years.”

The researchers also looked at the effect of environmental factors on brain size in the genus Homo, but correlations were generally weak. Brain size tended to be larger when Homo was living in habitats with less vegetation, like open steppes and grasslands, but also in ecologically more stable areas. In combination with archaeological data, the results suggest that people living in these habitats hunted large animals as food - a complex task that might have driven the evolution of larger brains.

“We found that different factors determine brain size and body size – they’re not under the same evolutionary pressures. The environment has a much greater influence on our body size than our brain size,” said Dr Manuel Will at the University of Tubingen, Germany, first author of the study.

He added: “There is an indirect environmental influence on brain size in more stable and open areas: the amount of nutrients gained from the environment had to be sufficient to allow for the maintenance and growth of our large and particularly energy-demanding brains.”

This research also suggests that non-environmental factors were more important for driving larger brains than climate, prime candidates being the added cognitive challenges of increasingly complex social lives, more diverse diets, and more sophisticated technology.

The researchers say there is good evidence that human body and brain size continue to evolve. The human physique is still adapting to different temperatures, with on average larger-bodied people living in colder climates today. Brain size in our species appears to have been shrinking since the beginning of the Holocene (around 11,650 years ago). The increasing dependence on technology, such as an outsourcing of complex tasks to computers, may cause brains to shrink even more over the next few thousand years.

“It’s fun to speculate about what will happen to body and brain sizes in the future, but we should be careful not to extrapolate too much based on the last million years because so many factors can change,” said Manica.

This research was funded by the European Research Council and the Antarctic Science Platform.

Reference

Will, M. et al: ‘Different environmental variables predict body and brain size evolution in Homo.’ Nature Communications, July 2021. DOI: 10.1038/s41467-021-24290-7

The average body size of humans has fluctuated significantly over the last million years and is strongly linked to temperature. Colder, harsher climates drove the evolution of larger body sizes, while warmer climates led to smaller bodies. Brain size also changed dramatically but did not evolve in tandem with body size.

Our study indicates that climate - particularly temperature - has been the main driver of changes in body size for the past million years.Andrea ManicaHuman fossils illustrating the variation in brain (skulls) and body size (thigh bones) during the Pleistocene.


The text in this work is licensed under a Creative Commons Attribution 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

The conservationist helping us to make better decisions

Fri, 04/06/2021 - 11:26

Bill Sutherland has started a revolution in conservation. Put simply he’d “like us to stop doing the things that we know don't work and do more of the things that do” – and with global collaborators is building the tools to help people achieve this.